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The paper describes a high resolution method (CICSAM) for the accurate captur-
ing of fluid interfaces on meshes of arbitrary topology. It is based on the finite-volume
technique and is fully conservative. The motion of the interface is tracked by the so-
lution of a scalar transport equation for a phase-indicator field that is discontinuous
at the interface and uniform elsewhere; no explicit interface reconstruction, which is
perceived to be difficult to implement on unstructured meshes, is needed. The nov-
elty of the method lies in the adaptive combination of high resolution discretisation
schemes which ensure the preservation of the sharpness and shape of the interface
while retaining boundedness of the field. The special implicit implementation pre-
sented herein makes it applicable to unstructured meshes and an extension to such
grids is presented. The method is capable of handling interface rupture and coales-
cence. The paper outlines the methodology of CICSAM and its validation against
academic test cases used to verify its accuragy1999 Academic Press

Key Wordsvolume of fluid; volume fraction; free surface flow; interface tracking;
interface capturing; unstructured meshes.

1. INTRODUCTION

The prediction of the flow of two immiscible fluids separated by a well-defined interfa
is of interest to several industrial applications such as two-phase flow in the chen
industry and the prediction of waves in the marine environment. An efficient numeri
scheme should not only resolve the flow field but also predict the position of the interf
accurately, while maintaining its sharpness.
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The available numerical methods for the prediction of two-phase flows with discr
interfaces can be classified irgarfaceandvolumemethods [1, 2]Surface methodsiark
and track the interface explicitly, either (i) with a set of marker particles or line segment
(ii) by associating the interface with a set of nodal points. Methods in (ii) are associated \
moving grids and are sometimes referred torasrface fittednethods. Surface methods
maintain sharp interfaces for which the exact position is known throughout the calculat
A disadvantage of these methods is that special treatment needs to be employed to de:
interfaces which are exposed to large deformations or stretching [3]. Extensive reviev
this type of methods can be found in [1, 2].

In volume methodshe different fluids are marked either by massless patrticles [4, 5] or
an indicator function which may in turn be a volume fraction [6, 7] or a level set[8—10]. T
advantage of these methods is their ability to deal with arbitrarily shaped interfaces ar
cope with large deformations as well as interface rupture and coalescence in a natural
In the massless particle method, individual particles are tracked in a Lagrangian ma
across an Eulerian mesh; such schemes are non-conservative in general. On the othe
methods which use indicator functions solve a scalar transport equation in an Eule
manner, thereby enabling the enforcement of conservation. The choice of indicator fun
can be either a scalar step function representing the volume fraction of the space occ
by one of the fluids (often referred to generically as VOF) or a smooth but arbitrary funct
(level set) encompassing a prespecified iso-surface which identifies the interface.

The choice of volume fraction as a phase indicator is a popular one but is pron
problems associated with the advection of a step function across a mesh that have
overcome, namely: how to advect the interface without diffusing, dispersing, or wrinkling
The present paper offers a scheme which goes along way toward meeting these require
and can also be used on unstructured meshes, without recourse to the more sophisti
but computationally complex, surface reconstruction schemes.

Different researchers have proposed various techniques for capturing a well-define
terface with the use of volume fractions. One of the first methods is known as the S
method (Simple Line Interface Calculation) [6], with several extensions and improveme
[11-14], and can be interpreted as relying on an explicit Lagrangian advection of rec
structed interface segments. The basic idea of these schemes is that a predefined
rules based on volume fraction values of the neighbouring cells is used to reconstruc
fluid distribution for a cell. The local velocities move the fluid distributions in a Lagrangi
way and the new volume fraction values are updated accordingly. In these methods th
shapes, usually rectangular, are implicitly included in the reconstruction of the interf:
Consequently, it is difficult to extend these methods to arbitrary complex meshes. Ex
sions to three-dimensional calculations pose similar difficulties. An extensive review of
type of methods can be found in [15].

An alternative approach to the problem of preserving interface resolution is to discre
the convective scalar transport equation for the volume fraction with a differencing sch
that guarantees physical (bounded) volume fraction values while preventing the sme
of the transitional area over several mesh intervals.

The widely used donor—acceptor formulation of the volume of fluid (VOF) method |
(sometimes referred to as the original VOF) is such a scheme. However, it has been de
as a piecewise constant volume tracking method, with the appealing feature that its vo
fluxes can be formulated algebraically without reconstructing the interface. It takes
interface orientation into account when calculating the amount of fluid fluxed over the f



28 UBBINK AND ISSA

of a control volume, ensures physical volume fraction values (overall boundedness bet
zero and one), and keeps the transitional area over one control volume. However, it doe
preserve local boundedness; i.e., a volume fraction value which initially lies between
values of its neighbours does not necessarily preserve this property when advected |
absence of shear. This feature numerically introduces new local minima and maxima it
volume-fraction field and leads to instances of non-physical deformation of the interf
shape [14, 16-18].

High resolution differencing schemes such as TVD methods, Flux Corrected Trans
(FCT) schemes, and techniques using the Normalised Variable diagram (NVD) [19] ©
another alternative. Several attempts have been made recently to apply these schem
all turn out to be too diffusive [20, 21]. FCT schemes are non-diffusive in nature, |
create areas of unphysical flotsam (floating wreckage) or jetsam (jettisoned goods)
Furthermore, these schemes are based on one-dimensional derivations with extensi
multi-dimensional flow by operator splitting [13, 22]. This limits their implementation t
structured meshes where control volume faces are aligned with the coordinate axes.

In this paper a new compressive discretisation scheme called CICSAM (Compres
Interface Capturing Scheme for Arbitrary Meshes) is developed. It makes use of the N
concept [19] and switches between different differencing schemes to yield a bounded s
field, but one which preserves both the smoothness of the interface and its sharp defir
(over one or two computational cells). The derivation of the scheme is based on the re
nition that no diffusion of the interface (whether physical or numerical) can occur; thu
is only appropriate for sharp fluid interfaces. The scheme is developed in the conte;
multi-dimensional applications, avoiding the need to use operator splitting. The resul
scheme turns out to be implicit by necessity and is theoretically of second-order temg
accuracy according to a Taylor series analysis of an equivalent linearised equation sy

2. THE GOVERNING EQUATIONS

The different fluids are modelled as a single continuum obeying the same set of gover
equations, with the different fluids identified locally by a volume fraction field. The prese
paper deals with incompressible fluids for which the governing equations for continuity
momentum are

V-u=0 1)

and
dpu
%-FV'(pU@U—T):pg‘f‘fd, @

wheret is the timeu the velocity,g the gravitational acceleratiom,the stress tensor which
contains the pressui, andf, the force due to surface tension. The local dengignd
viscosityu of the fluid are defined as

p=ap1+(1—-a)p2 3
and
w=cps+ (1—a)us, (4)

where the subscripts 1 and 2 denote the different fluidsxdadhe volume fraction defined
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as

1 for the point(x, t) inside fluid 1
o= { )

0 for the point(x, t) inside fluid 2

Finally, the conservative form of the scalar convection equation for the volume fractior

oo
— +V.au=0, 6
s TV (6)
closes the set of equations.

On a mesh, the Continuum Surface Force (CSF) formulation of the surface tension f
is given by [23]

Va
fo = —(cVa)V - (|V05|>’ @)
whereo is the surface tension.

The set of equations (1) through (7) is solved by employing a finite-volume procedur
a time-marching fashion. The discretisation of the continuity and momentum equation:
and (2) follows standard practices [18], using the PISO algorithm [24], and does |
therefore, warrant presentation here. However, the discretisation of Eq. (6), which gov
the motion of the interface, is the key to the accurate capturing of the interface, and h
will be the focus of the remainder of the paper.

The method of solution used in the present work is a sequential one, wherein the vol
fraction equation (6) is solved first, at the beginning of each time step. The new volt
fraction field is then used to compute the new density and viscosity according to Eqgs
and (4). The momentum and continuity equations are then solved by the PISO algor
[24], which executes a sequence of predictor—corrector steps utilising a pressure eqt
that is derived from a combination of Egs. (1) and (2).

3. THE PHASE INDICATOR EQUATION

3.1. Discretisation of the Equation

The finite-volume discretisation of the volume fraction convection equation is basec
the integral form of Eq. (6) over each control volume and the time intétvdf P denotes
the centre of the control volume (with volumé&), the Crank—Nicolson discretisation,
second-order accurate in time, leads to

n
(a5 —ab)Vp == %((Olf Fo)'+ (af Fp)™)st, (8)
=1

where f is the centroid of the cell face arfé is the volumetric flux defined as
Fr=As-uy, )

whereA is the outward-pointing face area vector normal to the face. The summatiot
Eq. (8) is over all cell faces.
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It should be noted that the Crank—Nicolson scheme embodied in Eq. (8) is a nece:
practice (as will be shown later) if operator splitting (which is inextricably linked to regul
meshes) is to be avoided and if the solution is to be free from numerical diffusion in
flow directions [18]. The scheme as defined above is more expensive in terms of comy
storage because it needs both the old and the new time level’s values for the volumetric
F at the faces. However, this can be overcome, because for a small enough time ste
variation of F is negligible in comparison with the larger variationcofind therefore it is
reasonable to use only the most recent valug.dfhus Eq. (8) reduces to

n
t+ot _ ot ét

op —ap+VP atFy, (10)
f=1

wheree} is the approximation of the time-averaged volume fraction face value definec
of = %(atf + ott{“st). (11)

For a cell-centred method, the cell centre values are used to interpolate the values ¢
faces in Eq. (11). It is this interpolation, which can guarantee a bounded solution w
maintaining the sharpness of the interface, that will be presented next.

The interpolation of the face value is the same for all faces and it is therefore suffic
to present the derivation for a single face only. A schematic representation for a ¢
dimensional control volume is given in Fig. 1. The centre cell (donor cell), referred to w
a subscript D, has two neighbours, known as the acceptor cell (the cell receiving flt
referred to with a subscript A, and the upwind cell, referred to with a subscript U. Thus
flow direction must be used to determine the location of the neighbours. The face betv
the donor and acceptor cells, referred to with a substripthe face under consideration.

It is reasonable to assume that the interpolated value at the face (face value) shou
between the values of the donor and acceptor cells. Linear interpolation of the face v
(central differencing), is second-order accurate, but results in an unbounded solutiol
convection dominated problems. The use of the donor cell’s value (upwind differenci
guarantees a bounded solution but is diffusive and smears the transitional area bet
the fluids over several cells. The use of the acceptor cell value (downwind differenc
does not preserve boundedness but maintains the resolution of the interface. The prc
of interface tracking therefore boils down to the selection of a combination of differenc
schemes which will preserve both the boundedness of the volume fraction distribution
the sharpness of the interface.

The original VOF [7] is a compressive scheme which has been developed for the captt
of well-defined interfaces. The name “donor-acceptor” already describes the proces:

Flow direction
e

oy Op 0y

FIG. 1. One-dimensional control volume.
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amount of volume fraction fluxed over the cell face is calculated by taking into account
volume fraction values in both the donor and the acceptor cell.

The downwind (acceptor) cell’s value of a certain face is used to maintain (or stee|
the resolution of the interface. It is well known that the downwind scheme violates
boundedness criteria, unless used under strictly specified conditions. In order to maint
bounded volume fraction field, a blending between the donor and the acceptor cell’s ve
is used. This blended value depends on availability of the different fluids in the donor ¢

An undesirable feature of the downwind scheme is its tendency to wrinkle the in
face when the flow is almost tangential to the interface [17, 18]. The original VOF |
compensates for this by switching to upwind (donor-cell) differencing when the interf:
orientation is more likely to be tangential to the flow direction than normal—this switch
activated abruptly when the angle between the interface and direction of motioh smM5
extensive study on the conditions for switching to upwind differencing was carried out [
and revealed that the accuracy of the methodology depends to a great extent on this
This will be elaborated on later. Thus, a problem associated with both the original Vv
[7] and SURFER [17] is that the donor—acceptor formulation used deforms the interfa
shape numerically [14, 16, 17, 18].

An analysis of the donor—acceptor formulation used in the original VOF [7] and SURF
[17] has shown that this non-physical deformation of the interface originates becaus:
methodology used does not comply with the local boundedness criteria and because
sudden switch between the controlled downwind differencing and upwind differencing [
The switch should be between two high resolution schemes which comply with the I
boundedness criteria: e.g., a bounded compressive scheme when the interface orier
is more likely to be normal to the direction of motion and a more accurate interpolat
scheme, such as bounded central differencing or bounded quadratic upwind interpole
when the interface is more likely to be tangential to the direction of motion. Furthermc
it is desirable to switch more gradually between these schemes than to switch sudder
proposed by the original VOF and SURFER.

The high resolution schemes used in the present study and the mechanism of swit
between them are described next.

3.2. Normalised Variable Diagram

The normalised variable [19] forms the basis on which the high resolution scheme:
constructed and is defined as

= Y- (12)
ap — oy
The normalised variable can be used to give expressiongfanta’; :
Gp = 2 (13)
ap—oy
Q¢ = ar “ou (14)
ap — oy

Reference [25] presents a convection boundedness criterion (CBC) for one-dimens
implicit flow calculations. The CBC uses the normalised variable and stipulates bound
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af A SOUD ) 1QUICK

FIG.2. Normalised Variable Diagram (NVD) with the convection boundedness criteria (CBC). UD, Upwil
Differencing; CD, Central Differencing; DD, Downwind Differencing; SOUD, Second-Order Upwind Differen
ing; QUICK, Quadratic Upwind Interpolation.

a¢ for which an implicit differencing scheme in 1D always preserves the local boundedr
criteria:

D forap <Oordp > 1

Q
Il
Q

(15)
<1 forO<ap < 1.

Q
lw)
IA
Q

Figure 2 shows the Normalised Variable Diagram (NVD), which plots the normalis
face value as a function of the normalised donor-cell value. The downwind, upwind, sect
order upwind, and central differencing schemes are also represented in the diagram
CBC, given by Eq. (15), defines the shaded area together with the line representin
upwind differencing scheme. Reference [19] showed that the various differencing sche
and the CBC can easily be constructed for one-dimensional explicit flow calculations. -
is done by introducing a linear weighting based on the Courant nuepber

&1 = (1- )&} + Céip. (16)

wherew’; is the normalised face value for the implicitimplementation. With this linearisatic
as — af if c—>0anda; — ap if c— 1; thus a point to point transfer of the upwind
nodal value occurs if; = 1. The CBC for explicit flow calculations reduces to

af = dp forap <Oordp > 1
s (17)
ap <& <min{1, % forO<ap < 1.

Figure 3 shows the CBC for the explicitimplementation with an arbitrary Courant num
c¢. In multi-dimensional flow the worst-case conditions are applied to the CBC by defin
the Courant number c to be the Courant number of the donor cell, defined as

c=>_[c"

faces

: (18)

wherec" is the Courant number for each outflow face of the donor cell [18, 26].
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FIG. 3. The convection boundedness criteria for explicit flow calculations.

A differencing scheme which follows the upper bound of the CBC for explicit flo
calculations is shown to be very compressive because it turns every finite gradientina s
field into a step profile [19]. Named as HYPER-C in [19], it was dismissed because o
unsuitability for advecting continuous profiles. However, it is precisely this characteri
thatis needed for the present purpose (at least when the interface is more likely to be nc
to the direction of motion).

The CBC defined above, together with the knowledge gained from the original VOF
and SURFER [17] on taking into account the interface orientation to the direction of moti
will be used in the next section for the construction of CICSAM, the proposed compres
differencing scheme.

3.3. The Basis of the CICSAM Differencing Scheme

In the previous section it was mentioned that the upper bound of the CBC, defined :

) min{%2 10}  whenO<ap <1

Afope = S - ~
cBe ap whenap < 0, ap > 1,

(19)

is the most compressive differencing scheme which complies with the local bounded
criteria and would therefore be the most suitable scheme for the advection of a step pr
at least in one dimension (i.e., when the step is normal to the flow direction).

Unfortunately, on its own a scheme defined by Eq. (19) which is derived from o
dimensional considerations is not suitable for direct application to multi-dimensions,
cause it tends to wrinkle the interface [7, 17]; numerical results in [18] demonstrate
behaviour. This is because downwinding tends to compress any gradient into a step pr
even if the orientation of the interface is almost tangential to the flow direction.

This problem is addressed in several works, all of which switch from the control
downwind formulation to upwind differencing [6, 17, 27] under certain conditions. Tl
most elementary procedure is to switch to upwinding when— aa| < ks, whereks is a
small prescribed constant [27].

The original VOF [7] determines the slope of the interface and switches to upw
differencing if the smallest angle between the interface and the face of the control volun
more than 45 An extensive study on the conditions for switching to upwind differencir
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was carried outin [17], which presents numerical results for a square volume fraction pr
convected in a uniform oblique velocity field. The results for different critical angles sh
that the square can end up with any shape, from a badly smeared sphere to a rotated
with a tail of flotsam, or a bullet shape aligned with the flow direction.

The defects highlighted by [17] would also be encountered with the present methc
one merely switched to upwind differencing at some point. This prompted a reexamina
of the problem which led to the realisation that the question should nehkeato switch,
but rathetowto switch, to upwinding. It was also realised that upwind differencing is tt
worst scheme to switch to because it does not actually preserve the shape of an inte
which lies almost tangential to the flow direction. Thus, it is necessary to switch to ano
high order scheme which will preserve the interface shape better. In the present stud
is done with the aid of the NVD and without much additional computational effort, becau
ap is already available.

A comparison of several higher order differencing schemes for the convection of vari
profiles in a uniform flow field reveals that ULTIMATE-QUICKEST (UQ), the transien
one-dimensional explicit bounded version of QUICK [28], performs the best [19]. Itis ti
scheme which is chosen for CICSAM, although other high order schemes would prob
be equally suitable. It should be emphasised however that on its own UQ is too diffusiv
apply everywhere, hence the need to switch between schemes at the appropriate poin
mathematical formulation of UQ used in the present study is obtained by applying Eq. |
to QUICK:

(20)

3 min{82etd-0®h +3 5, 1 whenO<dp <1
Hlue = op WhenoiD <0,ap > 1
As mentioned earlier, a key issue here is how to switch between Eq. (19) and Eq. (20).
a weighting factor G< y; <1, based on the angle between the interface and the direct
of motion, is introduced for the prediction of the normalised face value of CICSAM. Tt
weighting factor is used to switch smoothly between the upper bound of the CBC (Eq. (
and the less compressive differencing scheme, Eqg. (20):

Af = YiQfege + (1= y£)Afyo- (21)

The valuey; =1 is used when the interface orientation is normal to the direction of moti
andys = 0 when the interface is tangential to it. This implies that UQ operates where C
fails to preserve the gradient in the interface and that CBC operates where UQ fall
maintain the sharpness of the interface.

The basic derivation of CICSAM is completed with the definition of the weighting fact
yt, Which is based on the cosine of the angiebetweenVa)p, the vector normal to the
interface, and the vectat;, which connects the centres of the donor and acceptor ce
Thus,

(Va)p - d¢
O = - 22
‘ arcco%(va)D| ar (22)
yi = min{kycoizeff)—i_l’ 1}, (23)



SHARP FLUID INTERFACES 35

Oy =1 =05

IEJYf= 0
\
|

|
|
|
P
|
C D l ~

FIG. 4. NVD for CICSAM differencing scheme.

wherek, > 0 is a constant introduced to control the dominance of the different scher
(the recommended valueks = 1). The NVD of CICSAM is shown in Fig. 4.

To summarise, the normalised face value predicted with the CICSAM differenc
scheme for explicit one-dimensional uniform flow is defined by Eq. (21). The actual f:
value can be obtained by an algebraic manipulation of Egs. (13) and (14) to give

at = (1= B)ap + Braa, (24)
where
pr =T (25)
—p

The weighting factors¢, which implicitly contains the upwind valuey, carries all the
information regarding the fluid distribution in the donor, acceptor, and upwind cells as v
as the interface orientation relative to the direction of motion. The formulation of the f:
value in Eq. (24) is useful in enabling the multi-dimensional implicit implementation
CICSAM on arbitrary meshes, as shown in the next section.

It is of interest to compare CICSAM to the original VOF scheme. For each cell fe
CICSAM needs two explicit face values, namely the Hyper-C value and the Ultime
Quickest value. Depending on the gradient of the volume fraction field (orientation of
interface) a blend of these two values is taken. The original VOF also needs two face va
namely downwind value bounded to the availability of the fluids in the donor cell and
upwind value. Here one of the two values is taken to be the face value, depending o
interface orientation. Both schemes need the upwind value: the original VOF uses it ir
switch decision and CICSAM uses it for the third-order Ultimate-Quickest face value ¢
to bound the first-order downwind scheme.

The difference in the bounding mechanism of the original VOF and CICSAM first-orc
downwind scheme can be explained with the aid of Fig. 5. Panel (a) shows an arbit
fluid configuration in three neighbouring cells. The middle cell is the donor cell and
face under consideration is that between the donor and acceptor cells. Panel (b) s
the fluid distribution predicted with the donor—acceptor formulation of the original VC
It shows that the level of the fluid in the upwind cell is ignored in the prediction of tl
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FIG.5. Comparison between the donor—acceptor formulation and the upper bound of the CBC.

fluid distribution in the donor cell. This results in an incorrect steepening of the interf
gradient and eventually in the non-physical deformation of the interface. Panel (c) sh
the fluid distribution predicted with Hyper-C, the scheme which follows the upper bounc
the CBC. The level of the fluid in the upwind cell is taken into account, producing a m
realistic fluid distribution in the donor cell.

From the NVD in Fig. 4, it is clear that the formal order of accuracy is not uniform.
can vary from first order (upwind or downwind) to second order (centred) to third orc
(UQ). It can be argued that formal order of accuracy is not an appropriate measure 0
performance of a scheme in the vicinity of a step function. Indeed in one dimension
best scheme for preserving the sharpness of the step is the first-order downwind sct
Temporally, however, the discretisation is formally second-order accurate, as discuss
the following.

4. GENERALISATION OF CICSAM

4.1. Extension to Multi-dimensions

Most, if not all, bounded differential schemes are derived to preserve local bounded
in one-dimensional flow and an implementation in multi-dimensions may not necesse
maintain this characteristic. In multi-dimensional applications, an explicit split opera
technique [13, 22] is usually resorted to. The basic idea of operator splitting is to apply
one-dimensional equation in separate steps for each of the coordinate directions. This |
the implementation to structured meshes in which the faces of the control volume are ali
with the coordinate axes. In the literature no reference to compressive schemes implem
in ways other than the explicit split operator technique could be found. A possible reasol
this is that the donor—acceptor equation, used in earlier methods, consists of a compli
min/max principle which makes it almost impossible to separate in a linear weighti
between the two cells sharing the same face.

The aim of the development of CICSAM is the ability to implement it on arbitrary mesh
and therefore it is necessary to find an alternative to the split operator technique. To thi:
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FIG. 6. Prediction of the face value in multiple dimensions.

an analysis of the mechanism of the split operator technique is used for the constructi
the new, alternative technique to be presented herein.

As mentioned before, the operator splitting technique calculates the new volume frac
values in different sweeps, one for each coordinate direction. For symmetric differen
schemes, the new volume fraction values should be independent of the order in whic
sweeps are performed. The amount of volume fraction convected over a particular cell
however, varies with the sequence in which the sweeps are performed.

Figure 6 shows a donor cell with some of its neighbours on a two-dimensional mesh
is used to support the derivation of the new implicit implementation. The right face of
donor cellis under consideration here. The donor cell contains two fluids moving diagon
across the mesh. Figure 6a shows the original and new positions of the fluids contain
the four cells after an x-sweep followed by a y-sweep. Figure 6b shows the same proce:
ay-sweep followed by an x-sweep. The dark shaded area shows the amount of fluid 1 v
has crossed the right cell face of the donor cell. Clearly the new fluid distributions are exe
the same as they should be, but the amount of fluid 1 convected over the cell face durin
time step differs. Figure 6¢ shows the new fluid distribution after a single step anditis c
that the amount of fluid 1 which has crossed the right cell face is the average of the amc
shownin Figs. 6a and 6b. The explicit split operator discretisation for the xy-sweep show
Fig. 6ais

ol = ab 4 ¢ af —Cral (26)

w

tot i i i
ap - =ap +Cray —Crax, 27)
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where the subscripts e, s, windicate the north, east, south, and west cell faces, respectiv
The superscript indicates an intermediate stage after a sweep in one direction has &
completed. A combination of the two sweeps reduces to

t+ot __ ot t t i i
OlD = C(D + wa(){fw - CfeC{fe + Cfsafs — Canéfn. (28)

A similar discretisation applies for the yx-sweep shown in Fig. 6b

aft = af + waaifw — Cfeotife + CfSOlth — Canltfn. (29)
In order to remove the dependence on the sequence in which the sweeps are performe
average of the xy-sweep and yx-sweep (Egs. (28) and (29)) is taken and this results it

ap®™ =af + icy, (e +af ) — 3 (), +ak)

+Jen (o, + o) — For (o, + o). 9
In order to solve Eq. (30) in a single step it is necessary to make an assumption abot
intermediate face value of the volume fraction denoted by the superisdfipim inspection
of Figs. 6b and 6c¢ it is evident that the choice

Ct’if — atf+6t (31)

is agood approximation, and this is supported by a truncation error analysis which shows
Eq. (30) becomes second-order accurate in time (equivalent to using the Crank—Nicc
scheme). Indeed, numerical experimentation reveals that this scheme must be employ
opposed to the Explicit or Euler implicit schemes) if deformation of the interface is to
avoided [18].

With this definition of the face values another problem arises. The face values are c:
lated according to Eq. (24) bgt, the weighting factors for the new time, are not available
Earlier it was mentioned that the weighting factors represent the slope and orientatic
the interface. If the time step is small enough, the interface slope and orientation will v
little and it is therefore reasonable to assume that the old weighting factors can be t
Thus, the time-averaged face value is defined as

b + ol o oy + o
f .
2 2

af = (- Br) (32)
However, use of Eq. (32) does not guarantee that overall boundedness is always sati
Occasionally there may be volume fraction values slightly less than zero or slightly gre
than unity, especially when the mesh consists of very badly shaped cells. A predic
corrector solution procedure which removes all the non-physical values is needed anc
is presented next. Thus, the valueaoin Eq. (32) should be regarded as an initial gues
which may have to be updated to result in a fully bounded field.

4.2. Predictor—Corrector Procedure

As mentioned, compressive differencing schemes are derived to operate at the uppel
of the boundedness criteria and non-physical volume fraction values occur from tim
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time. Reference [7] overcomes these occurrences by resetting the non-physical value:
to zero or one, claiming the accumulated changes of the fluid volumes are small enc
However, it was found in the present study that the resetting of the non-physical volr
fraction values introduces a conservation error which affects the momentum equation:
manifests itself in a spurious velocity field.

It should be emphasised that the occurrences of non-physical values are rare. How
they do appear from time to time and therefore need to be corrected. The procedur
achieving this is to solve the equation in two steps: a predictor and a corrector sequen
The latter need only be carried out when non-physical volume fraction values occur.

The predictor step consists of the calculation of the CICSAM weighting f#gtand the
new volume fractions. If any of the new volume fraction values have non-physical valt
theng: is set equal tg8; and the correction procedure described below is effected.

For an explicit split operator calculation the face values of the donor cells with unboun
values could be adjusted in correspondence with the degree of unboundedness in the
cell. For the implicit scheme, however, the face values cannot be corrected directly, bec
they are implicitly defined by the weighting factors and the new volume fraction valu
Thus it is the weighting factors which need to be corrected instead.

Furthermore, with an explicit split operator calculation the non-physical values rem
localised. With the implicitimplementation however, the localised non-physical values
convected throughout the domain and it is difficult to trace their origin. When correct
the weighting factors, it is therefore necessary to distinguish between non-physical ve
caused by too much downwinding and those caused by convection into a cell during
implicit calculation. The correction procedure described here automatically distinguis
between the two.

The correction procedure consists of a visit to all cell faces. If the donor cell conte
a non-physical volume fraction value, a test is performed to evaluate whether too n
downwinding at the face under consideration has caused the unboundedness. If si
weighting 8} is reduced with8};, an amount proportional to the degree of unboundedne
as described below.

First, the negative volume fraction case will be discussed. A negative volume frac
implies that more of fluid 1 has left the donor cell than is available in it. The new amoun
fluid 1 to be convected over the face is determined by subtracting the unboundedness
from the original amount of fluid convected over the face, reducing to

(X?*CfVD = (X?Cf Vp —E Vp (33)
E-

S aff =af — —, (34)
Ct

wherea* is the new face value and Hs the magnitude of the unbounded volume fractio
value, defined as

E- = max{—a™", 0}. (35)

The new face value}* is substituted in the face value equation (32) to obtain a ne

approximation for theg weighting factor

a}:, + (a};‘“ + E’)
2

Lt (o — )

sk sk **aA
af =1 - B7) + B} 2 )

(36)
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where
Bt = BT — B (37)

According to Eq. (36) the corrected weighting facgi™ should always be less than or
equal to the previous weighting factor. If not, the contribution of the downwind cell sta
to increase and so does the degree of unboundedness. The lower ljfifit @mains zero
and this is applied to Eq. (37) to obtain bounds ¢t

0= B; < B7. (38)

Equations (36) and (37) are substituted into Eq. (34) to obtain

at + at+5t + E— . at + at+8'[ _ E— . E—
A= (B =B )2 ——— + (B} - E—— =0 —— (39)

2 2 Ct

E-(2+ct — 2c¢BY)
= B = , 40
At 2c¢ (Aa* — E7) (40)
where

Aat — %8 +2“IA+M _% +2°‘ID+&. (41)

Equation (40) needs to be bounded with the bounds defined in Eq. (38):

(E-@tcr -2
/ mm{w, /3?} whenAa* > E-
Bs = (42)

0 whenAo* < E™.

A similar corrector for the case in which the volume fraction value exceeds unity can
derived,

. E*(2+ct —2cBt) +
ﬂ/ B m|n{m, IB?} whenAa* < —E (43)
=
0 whenAe* > —E*,

where
Ef = max{a™ — 1,0} . (44)

Equations (42) and (43) are now used to update the weighting fagtor&Eq. (37)) and
these are then used to solve Eq. (8), the discretisegliation, for the new volume fraction
distribution. If non-physical values still exist, the corrector procedure is repeated. Or
orthogonal mesh the corrector sequence is seldom needed but on an arbitrary mest
badly shaped control volumes it may be necessary to apply it more than once.

4.3. Unstructured Meshes

As noted above, the upwind value is required for the calculation of the normali
variable defined by Eq. (12). On arbitrary meshes the upwind \aluis not necessarily
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FIG. 7. The prediction of the upwind value for an arbitrary cell arrangement.

readily available and therefore high resolution schemes are restricted to rather simple
structures. Reference [29] overcomes this problem with a new definitiep wfich does
not containxy directly, but the gradientVa)p, calculated with the aid of Gauss’s theorem
However, numerical results on the convection of step profiles on arbitrary meshes |
shown that this formulation does not necessarily guarantee a bounded solution.

To ensure boundedness, a new method for the calculatiog isfpgresented. This method
also uses the gradient over the cell, but it is used to obtain a bounded approxiajatmm
the upwind value, instead. This approximated upwind value is then used in Eq. (13) fol
calculation ofop.

Figure 7 gives a schematic representation of two cells with an arbitrary arrangement.
gradient(Va)p is a vector quantity defined over the donor cell and points in the direction
whicha changes the most. The dot product of this gradient with the unit vector tanger
tod,

d
(Va)p, = (Va)p - i’ (45)

gives the gradient af over the donor cell in the direction df The same gradient can also
be approximated with central differencing:

ap—af

\% = —. 4
(Vado, = =5 (46)
Equations (45) and (46) are used to obtain an expressiagj;for
af =ap—2(Va)p - d. 47

The above approximation does not guarantee a boumgiehd therefore it is necessary to
bound it with known bounds af. The bounds can be either the maximum and minimu
values of the whole flow or local values derived from the cell’s nearest neighbours:

oy = min{maxay;, @min}, ®max}- (48)

In the present study the physical bounds of the volume fractions (zero and one) are
for the lower and upper bounds, respectively. On a regular orthogonal grid this formula
will always return the true upwind value.
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5. TEST CASES

The test cases in this section focus on the advection of interfaces of different shi
exposed to translation, rotation, and shear flow. Prescribed velocity fields are used ar
attempt is made to couple the advection of the volume fraction field with the moment
equations. A comparison of the behaviours of different volume tracking schemes, nar
SLIC, the original VOF, FCT-VOF, and Youngs-VOF, made for a number of acader
cases is available [16] and those cases will be repeated here for CICSAM on both struc
and unstructured meshes. For the purpose of comparison the solution errors presen
Ref. [16] are repeated here. The solution error is defined as

o _ X lalVol — Vol |
- Ziall Ce"sai"VoIi

(49)

wherea" is the calculated solution aftartime stepse? the analytical solution, ang® the
initial condition. This definition differs slightly from that given in [16], to make provisior
for variable volume sizes. However, in the case of constant cell volumes the two definit
are equivalent.

Several meshes are employed for this series of tests. For the cases presented in Secti
to 5.3 four meshes have been employed, namely:

—100 x 100 uniformly spaced cells fot, y € [0, 7],

—200 x 200 uniformly spaced cells fot, y € [—2, 2],

—an unstructured mesh consisting of 10,040 cells shown in Fig. 8 (to correlate v
the uniformly spaced mesh of 160100 cells), and

TR
T
0’

i’

FIG. 8. Unstructured computational mesh (10,040 cells).
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FIG. 9. Cell size distribution of the 10,040-cell unstructured mesh compared with that of the uniform m
of 100x 100 cells.

—an unstructured mesh of 40,341 cells (to correlate with the uniformly spaced nr
of 200 x 200 cells).

An analysis of the cell sizes on the unstructured meshes is given in Figs. 9 and
Approximately a quarter of the cells on the 10,040-cell mesh are the same size as thc
the case of the uniformly spaced mes30% of the cells have a finer resolution, ahd5%
of the cells have a coarser resolution. The cell sizes range between 0.5 and 1.5 time
cell sizes of the uniformly spaced mesh. Approximately 30% of the cells on the 40,341-
mesh are the same size as those in the case of the uniformly spaced138%hof the cells
have a finer resolution, antd35% of the cells have a coarser resolution, ranging betwe
0.4 and 1.7 times the cell sizes of uniformly spaced mesh. In all cases the time step is cf
to maintain a maximum mesh (material) Courant number of 0.25. These time steps are

% of cells
G BB 8 &

e
a O

0 1 2
Relative cell size

FIG. 10. Cell size distribution of the 40,341-cell unstructured mesh compared with that of the uniform m
of 200 x 200 cells.
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the same for the runs on the unstructured meshes, resulting in higher maximum Col
numbers on these meshes.

Results for successive mesh refinement are presented in Section 5.4 to illustrat
convergence behaviour of the scheme.

5.1. Constant, Oblique Velocity Field

The first series of tests is the advection of different scalar fields with an oblique un
rectional velocity field of (2, 1). The different volume fraction fields are:

—a hollow square aligned with the coordinate axes,
—a hollow square rotated at Z5° to the x-coordinate axis, and
—a hollow circle.

In the case of the structured mesh, the side lengths of outer and inner interfaces of the s
are 40 and 20 cells, respectively, and for the circle the outer and inner radii are 20 and 10
respectively. Initially the centres of the shapes are-dt2, —1.2) of the 200x 200 mesh
and after advection the theoretical new centres are at (1.3, 0.05). The same initial condi
are mapped onto the unstructured mesh by simple area-overlapping calculations.

Close-up views of the final shapes are given in Fig. 11, with the analytical solution shc
in the top row, the structured mesh results in the middle row, and unstructured mesh rest
the bottom row. The solution errors, together with those calculated by Ref. [16], are give
Table |. Figure 12 gives the graphical correlation of the solution errors. The results obta
with the structured mesh are denoted by CICSAM-S and those with the unstructured r
by CICSAM-U.

Compared to the shapes presented by Ref. [16], CICSAM on both structured and
structured meshes performs on average much better than SLIC and the original VOF,

Analytical
solution on
unstructured
mesh

Numerical
solution on
structured
mesh

Numerical
solution on
unstructured
mesh

FIG. 11. Advection with an oblique unidirectional velocity field.
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TABLE |
Errors for Translation

SLIC? Hirt-Nicols*  FCT-VOF*  Youngs-VOR  CICSAM-S  CICSAM-U

Square 1.32E-01 6.86E-03 1.63E-08 2.58E-02 2.50E-02 3.97E-0¢
Rotated Square  1.08E-01 1.60E-01 8.15E-02 3.16E-02 4.00E-02 4.00E-C
Circle 9.18E-02 1.90E-01 3.99E-02 2.98E-02 4.33E-02 2.84E-02

2 Errors obtained from Ref. [16].

improvement on FCT-VOF, and closely follows Youngs’ method. The latter is more con:
tent regarding the magnitude of the error for the three different shapes while the magnit
of the errors of CICSAM and SLIC vary slightly for the different runs but not to the sar
degree as in the case of the original VOF and FCT-VOF. What is significant is that
results of CICSAM on an unstructured mesh are better than those of all the other met
on structured meshes with the exception of Youngs’ method, which is much more com
because it is based on a reconstruction methodology.

5.2. Solid Body Rotation

In the present case the volume fraction field, in the shape of a circle with a slo
illustrated in Fig. 13, is exposed to a circular velocity field. The same computational g
of the previous section are used, with the centre of the circle at (0.0, 0.75) and the cen
rotation at (0, 0). On the structured mesh the diameter of the slotted circle is 50 cells
width of the slot 6 cells, and the depth of the slot 30 cells. The time steps have been ch
such that one rotation corresponds to 2524 time steps (the same as that used by Ref.

Results after one revolution are shown in Fig. 13. The solution errors, including th
presented by Ref. [16], are given in Table Il and a graphical representation of these err
given by Fig. 14. The relative performance of the different schemes is similar to that in

4.00E-01
3.50E-01 M
3.00E-01
2.50E-01 7 Ocircle
2,00E-01 W Square (26.75)
1.50E-01 - [ Square (0)
1.00E-01 -
5.00E-02
0.00E+00 -

Error

O @ &K © QD N
> & O «0“’& F

FIG. 12. Graphical correlation of the solution errors for the translation test.
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Structured mesh: 1 revolution Unstructured mesh: 1 revolution

FIG. 13. Solid body rotation for a split circle.

previous example. Here again the unstructured mesh results from CICSAM are superi
the results of other methods on structured meshes, apart from Youngs’ method.

5.3. Shear Flow

In most real interfacial flow cases the situation is far more complicated than mel
preserving the initial shape, as the interface deforms considerably. As argued by Ref.
it is important to evaluate the performance of volume tracking schemes in the presen
fluid shear. Such a velocity field is given by [16],

u = (sin(x) cogy), —cogx) sin(y), 0), (50)

wherex, ye [0, 7]. The structured mesh of 100 100 cells and its corresponding unstruc
tured mesh are used here, with the initial volume fraction condition defined as a circle \
radius 027 and centrg0.5x, 0.2(1+7)). The volume fraction field is exposed to the abov:
velocity field for a certain time (say time steps), after which the velocities are reversed f
the same length of time in order to return the volume fraction field to the initial conditic
A perfect advection scheme should result in the same initial volume fraction field.

The results just before reversing the velocities and at the end of the calculations
N = 1000 andN = 2000 time steps are given in Fig. 15. Solution errors Kb 250,
N =500,N =1000, andN = 2000 for CICSAM together with errors presented by Ref. [1€
are presented in Table Ill. The graphical correlation of these solution errors is givel
Fig. 16. The error trends are very similar to those presented in the previous two exam

Theoretically, breakup of the tail should never occur for this case. In theltas2000
the interface is stretched to such an extent that two parts of the interface pass through a:
cell (especially in the case of the unstructured mesh, which has a coarser mesh reso
at some places), a situation which is a challenge to most interface capturing technic
Despite this limitation, CICSAM performs well, even on unstructured meshes.

TABLE Il
Errors for Rotation

SLIC® Hirt-Nicols® FCT-VOP Youngs-VOP CICSAM-S CICSAM-U

Split circle 8.38E-02 9.62E-02 3.29E-02 1.09E-02 1.62E-02 2.02E-02

2 Errors obtained from Ref. [16].
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TABLE IlI
Errors for Shear Flow
N SLIC? Hirt-Nicols? FCT-VOF Youngs-VOR CICSAM-S CICSAM-U
250 2.72E-02 3.24E-02 1.94E-02 2.61E-03 1.63E-02 9.39E-03
500 3.30E-02 4.00E-02 2.35E-02 5.12E-03 2.09E-02 1.10E-02
1000 4.59E-02 6.60E-02 3.14E-02 8.60E-03 2.90E-02 1.82E-02
2000 9.02E-02 1.09E-01 1.44E-01 3.85E-02 5.67E-02 4.17E-02

2 Errors obtained from Ref. [16].

1.20E-01
1.00E-01 =
8.00E-02 - |
o
g 6.00E-02 O Split circle
w
4.00E-02
2.00E-02
0.00E+00 T T T I_I T |_| T
P L F P
9 Y ; N X
> & O F P
¥« > &
FIG. 14. Graphical correlation of the solution errors for the rotation test.
a b c d

O O

O O

FIG. 15. Results for the shear flow case. Top row, on the structured mesh; bottom row, on the unstruc
mesh: (a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward, (c) 2000

forward, (d) 2000 steps forward followed by 2000 steps backward.
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. S —— FCT-VOF
£o0084 T Ll .
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----- CICSAM-U
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0.04 -
0.02 -
o T T T T
0 500 1000 1500 2000 2500
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FIG. 16. Graphical correlation of the solution errors for the shear flow test.

5.4. Convergence

The case studies are completed with a convergence test for the rotation of a cir
volume fraction field on a regular mesh. A circle with radius 1.6 and centre [0, 0] is plac
in a computational domain of, y e [—2, 2] and is exposed to a rotational velocity field.
Solution errors as defined by Eq. (49) after one revolution for different medites
10,20 x 20,40 x 40,80 x 80,160 x 160 are given in the middle column of Table IV.
The order of convergence for two consecutive runs is given in the last column, indica
a first-order convergence rate as the mesh becomes fine. This is not surprising sinc
interface is captured over two to three cells at all times irrespective of the mesh den
Thus the error in capturing the interface can at best diminish proportionally to the reduc
in the cell width, i.e., a linear convergence rate with mesh refinement. This indeed supj
the argument made earlier that the formal order of accuracy can be misleading in the co
of step functions.

TABLE IV
Errors and Order of Convergence for
Rotation of a Circle

Mesh Error Order
o020 oeomos  20EN0
% 6OE-
1.14E+00
40x 40 1.18E-02
80x 80 5.48E-03 1.10E+00
x OE 1.04E+00
160x 160 2.66E-03
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6. CONCLUSIONS

A method for capturing sharp fluid interfaces on arbitrary meshes has been prese
It is based on the solution of a transport equation for a fluid-indicator function whick
chosen to be the volume fraction. To circumvent the problem associated with the adve:
of a step profile across Eulerian meshes, a new discretisation scheme CICSAM, w
combines both sharp resolution of the interfaces and boundedness of the volume fra
field, has been developed. The scheme relies on the Normalised Variable Diagran
switches smoothly between two high resolution schemes depending on the orientatic
the interface to the flow direction, a procedure which ensures optimum preservation o
integrity of the interface. The method is developed in multi-dimensions to avoid the neec
operator splitting, which would limit usefulness to regular meshes. The resulting schen
implicit, is theoretically of second-order accuracy in time, and is applicable to unstructu
meshes. It is demonstrated that this scheme can outperform, even on unstructured m
most other interface capturing schemes with the exception of the more complex inter
reconstruction methods.
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